
1

Interactive out-of-core visualization of very large multiresolution
time series scientific data

Progress Report
April 15, 2007

1. Proposed goals for year 1
The principal goals for the year as described in the proposal are shown in the table below.

Development Task Target Month Scientist Task Target
1. Software framework 3 Access our data modules from their renderer code
2. Granite/C++ 5 Use caching/pre-fetching features, compare results
3. Visualization application 7 Use and evaluate our visualization application
4. LAN distributed data 9 Distribute their active data over the LAN, evaluate
5. Non-uniformly distributed grid 12 Modify renderers to access grid position data
The first two development goals (Software framework and Granite/C++) address critical
foundational tools to provide the key software support for efficient access to the multiresolution
(MR) data sets generated by our MR data generation tool.

The third goal (Visualization application) was the key factor that drove the entire
implementation strategy; we planned to develop visualization algorithms that use our
multiresolution data access software. Our goal was to implement specific visualization
algorithms that would be useful to support the research of our science collaborators doing MHD
research.
The fourth goal (LAN distributed data) was intended to evaluate the performance characteristics
associated with distributing the multiresolution versions of our colleagues' very large data sets
over the local area network. In particular, we want the lower resolution data representations to be
stored on the local workstation and higher resolution data stored in a large file server on the
LAN. We intended to evaluate the performance degradation that results from the higher latency
of LAN access versus local disk access in order to develop guidelines for a heuristic
determination of appropriate distribution parameters.

The final goal (Non-uniformly distributed grid) was to enhance our MR data software to support
non-uniform grid positioning.

2. Revised goals for year 1
In July 2006, we developed a significantly different implementation model than we had
proposed. Our science collaborators had began using the VisIt visualization environment
developed at Lawrence Livermore Laboratories. This package provides a large number of
visualization modules in a user-friendly interactive environment that also supports parallel
computation on their very large Beowulf cluster. The VisIt environment was a very effective tool
for their research needs. In consultation with our collaborators we decided to re-evaluate our
goals; it was not feasible for us replicate all of the visualization options that VisIt already
provides. It became clear that rather than implementing specific visualization algorithms using
our MR data management tools, we should develop a VisIt data interface that would allow all
VisIt visualization modules to access our MR data management software. The principal effect of
this decision was the replacement of our third major goal (Visualization application) with one to
develop a VisIt data interface module and a re-ordering of the implementation schedule. This
revised plan is shown in the table below.

2

Revised Development Goals Revised Scientist Goals
1. Software framework Access our data modules from their renderer code
2. Non-uniformly distributed grid Modify renderers to access grid position data
3. VisIt data interface module Use and evaluate the VisIt interface
4. Granite/C++ Use caching/prefetching features, compare results
5. LAN distributed data Distribute their active data over the LAN, evaluate

3. Achievements for year 1
3.1. Software framework (STARview)
As a result of our decision to put more effort into integration with existing visualization tools (in
particular, VisIt), we altered our plans for development of our own visualization environment.
Instead of concentrating on visualization tool development, we re-examined and re-designed our
software framework to better isolate the data modeling components from the visualization
components. This was an aspect of our initial design, but the realities of interfacing with a
completely independent software package exposed some weaknesses in our original design. We
had also gained experience with using our initial design that identified other modifications that
we felt would create a cleaner, more efficient design. We ended up doing a fairly extensive re-
design and re-implementation of the Datasouce subsystem of STARview. The resulting system is
a significant improvement in elegance, flexibility, maintainability, and performance. The revised
Datasource module provides a simple straightforward interface to the VisIt data interface
module.

3.2. Non-uniformly distributed grid
We implemented support for the kinds of non-uniformly distributed grids that are needed by our
collaborators. In this case grid positions are rectilinear, but the positioning along each axis is
variable. Such data is often called a non-uniform rectilinear grid. The positioning information is
specified in a metadata file whose presence automatically triggers the invocation of this support.

3.3. VisIt data interface module
VisIt is a general purpose visualization environment aimed at giving researchers scientific
visualization tools for scientific datasets. VisIt is built largely upon the Visualization Toolkit
(vtk) libraries, extending the interface and providing a comprehensive environment to the
scientist. The VisIt toolkit supports many different types of data and has a modular architecture
that allows users to build data plugins to access other types of data. We have implemented a
database plugin for VisIt that can read our multiresolution hierarchy and provide VisIt renderers
with multiple resolutions of data.

We have integrated our multiresolution data software into VisIt so that any rendering plugin can
use the multiresolution data. Existing plot plugins in VisIt do not even need to be recompiled to
become multiresoluion-aware. To achieve this task, we have separated our multiresolution data
access module from the visualization subsystem.

Our software consists of two VisIt plugins. The first is a Database Reader plugin, which has the
responsibility of reading and importing data in our multiresolution format for use with VisIt
plots. The second plugin is an Operator plugin, which presents the user with a widget,
implemented as an Operator Attribute, to control the level of refinement from which the current
plot plugin gets its data. By checking the box Auto Update in the VisIt user interface, changes to

3

the current resolution will automatically re-invoke the VisIt rendering pipeline, so that the current
plot is regenerated with the chosen level of refinement.

Technically speaking, our multiresolution control widget does not "operate" on the data in the
sense defined by the VisIt framework (i.e., as a run-time filter). Instead, this widget acts only as
a front end controller to the database plugin, directing it to fetch data at user specified
resolutions. A more proper implementation would not use an Operator for such a task. Instead,
a generic controller widget associated only with the Database plugin should be implemented.
We are told that future versions of VisIt will support such a feature, and it is our intention to use
that functionality when it becomes available.
There is a fundamental and significant limitation to the multiresolution functionality that we can
support via the VisIt interface. VisIt relies on the vtk for its underlying visualization model and
tools. The vtk implementation model is very heavily dependent on the assumption that all data to
be rendered can be stored in main memory at one time during the rendering processes. It is
simply not feasible to retrofit existing vtk-based renderers to perform out-of-core rendering,
which is what is needed to create an image from data sets that are larger than will fit in main
memory. It is possible, of course, to write a specific new renderer that does out-of-core
rendering, but that approach does not achieve our goal of keeping the renderer ignorant of the
implementation of the data access.

Our VisIt interface is a very effective mechanism for accessing multiresolution data sets without
having to rewrite each visualization tool – as long as the data to be rendered fits in main
memory. This is not a huge restriction given the basic interaction model whereby higher
resolution data representations are accessed as the user zooms in to smaller spatial and temporal
ranges – the system can use available memory as a constraint in determining which resolution to
access for a given spatio-temporal request. However, there are significant features of our
proposed environment that are not effective in this context. In particular, we have shown
dramatic improvements in interactive visualization performance using our iteration-aware
caching and pre-fetching techniques for out-of-core rendering. We cannot provide this
functionality within the current VisIt environment.

3.4. Granite/C++ interface
The Granite component of our software environment is a comprehensive Java-based
environment for modeling and interfacing to very large scientific data sets. This software was
developed as part of two previous NSF grants for research in this area. Of particular relevance to
our AISR efforts are the features Granite provides for doing efficient I/O caching and pre-
fetching that provides dramatically improved performance for out-of-core data visualization
compared to what is possible using the normal file-system caching. An important goal of this
project is to make these features of Granite available to STARview by developing a Granite/C++
interface.

Because of the nature of the current VisIt environment, the VisIt rendering modules cannot take
advantage of the Granite support for out-of-core visualization. Consequently, when we re-
defined our goals in July, the Granite/C++ interface lost some of its immediate priority. We still
think this an important functionality that will become increasingly valuable as data sets continue
to grow in size. The immediate value of providing multiresolution support for all VisIt renderers,
however, was clearly much higher.

We have, however, made progress in implementing this interface. The basic data access
functionality is working; the STARview C++ environment can open and access any datasource
via a Granite RemoteServer process. The RemoteServer also supports iterator-defined access,

4

which is the key feature needed to access the Granite caching and pre-fetching functionality.
However, it does not yet transform the iteration-specification into the appropriate Granite calls to
invoke the caching and pre-fetching code. Performance tests of the implemented functionality
show a small, but significant degradation in access time when using the Granite interface
compared with direct C++ I/O. The overhead, however, is insignificant compared to the gains
we expect to achieve in out-of-core visualization when the caching and pre-fetching functionality
is added.
3.5. LAN distributed data
We have not yet carried out a rigorous performance test for access to distributed data over a
LAN. Our informal experience indicates that there is a noticeable difference in performance
between accessing data on a local disk compared to data on a LAN. This degradation is partially
mitigated within the Granite system by the caching and pre-fetching functionality. We would
prefer to carry out real testing after that functionality is implemented in the Granite/C++
interface. In addition, it is pretty clear that the need for accessing LAN data is crucial and that
the performance degradation is acceptable. Although we would like to try to quantify that better
and try to develop guidelines for the nature of the distribution, this does not seem to be nearly as
important as other possible tasks. Finally, we have a colleague, Philip Rhodes, at the University
of Mississippi who has been extending Granite to support caching and pre-fetching functionality
over a wide-area network (WAN). His preliminary results have been promising and the
techniques he is developing could be also be applied to reduce latency in data access over a
LAN. Again, it would be preferable to do careful LAN performance testing that could
incorporate this option as well.
3.6. Achievements summary
The table below provides a very terse summary of what we have accomplished for each of our
revised major goals.

Revised Goal Achievements
1. Software framework Planned implementation was completed; additional re-

design and re-implementation completed in order to better
support VisIt integration.

2. Non-uniformly distributed grid Completed for non-uniform rectilinear data distribution.
3. VisIt data interface module Preliminary version completed and is being used by our

collaborators. This version requires the user to explicitly
invoke a resolution level change.

4. Granite/C++ Basic interface working; but caching and pre-fetching
functionality is not yet complete.

5. LAN distributed data Not done. Now seems to have lower priority

4. Revised future goals
4.1. Investigate VAPOR
VAPOR is a 3D flow visualization environment being developed at NCAR. VAPOR is much
more focused than VisIt, but it seems to provide some very sophisticated flow visualization tools
for which there is nothing comparable in VisIt. VAPOR also incorporates on-the-fly MR
computations based on wavelets. The VAPOR approach to MR data representation is
significantly different from ours, but the overall software structure of their system may allow us
to integrate our data model into their code. We have downloaded and installed VAPOR. We

5

intend to investigate whether it is feasible and desirable to try to do this integration. The input
from our science collaborators concerning the appropriateness and value of the interactive
visualizations provided by VAPOR will be a critical factor in determining the desirability of this
task. (Note that the complete task list only includes VAPOR evaluation. If we decided that an
interface to our data model is desirable, that will become a new task that will probably have to
displace some other task.) Target completion: July 2007.

4.2. Non-uniform grids
Our current implementation only provides limited support for non-uniformly placed grid
positions; we support the non-uniform rectilinear grid used by our collaborators. A more general
support would allow a user to identify specific attributes in the data that represent the positions
of each point in the grid. Such support would be highly desirable prior to making the software
available for general use. We plan to add this feature to the software. Target completion: August
2007.

4.3. Develop distribution package for the VisIt interface and STARgen tools
The current version of the VisIt plugin interface to our multiresolution data model is essentially
complete and very usable. It will have a broader use once we provide better support for non-
uniform grids. We would also like to improve the user interface to make it easier for the user to
browse through a data hierarchy tree. Once that is done, we plan to bundle this tool, the
associated data generation tool, STARgen, and some documentation into a distributable package
for anyone to download. We believe that this interface will be of value to a wide range of users.
STARgen output is used by the VisIt interface. STARgen input works on any data that is
represented as 2D or 3D arrays and is stored with one attribute per file. It also supports time
series data as long as all the files of a single attribute are stored in the same directory and the
names of the files follow a pattern that includes the time step index as part of the name. Target
completion: September 2007.
4.4. VisIt interface enhancement
The current VisIt interface tool requires the user to explicitly select the desired resolution level.
Our STARview tool automatically selects the highest resolution level that "fits" into a specified
memory footprint chosen to insure some desired level of interactivity. We would like to bring
this functionality to the VisIt environment. (Note that we do not intend to provide this
functionality in our initial distribution package described above; we do not want to distribute
software until we have used it fairly extensively ourselves.) Target completion: September 2007.
4.5. Error support
A fundamental aspect of our entire data model is that we integrate local error estimates into the
lower resolution data representations. It is very important that a scientist be able to see the
authenticity of any visualization being presented from processed data. Integrating error
representation into the same visualization as the data itself is a very complicated research
problem that we do not plan to address directly. On the other hand, it is not very hard for a user
to generate two side-by-side images – one with the data and one with the error – or to alternate a
data view with an error view. This is especially easy in the context of the VisIt environment. To
make this work, however, we need to finalize our error-generation utility that computes an
approximation to a local error model for every low resolution data representation. Target
completion: September 2007.

6

4.6. Granite/C++ interface
We plan to expand the Granite/C++ interface to provide access to the Granite caching and pre-
fetching functionality. Since it is not likely that this functionality will be beneficial within the
VisIt environment, we plan to test this from our STARview software. The potential benefit of this
functionality is significant enough that we need to evaluate its power even if we can only do that
by implementing a new visualization tool to access it. Target completion: January 2008.
4.7. Adaptive resolution support
Adaptive resolution (AR) data representation provides a single data representation that has
different resolutions in different spatial or temporal regions; regions with high variation will use
a higher resolution and than those with low variation. This model may allow for significantly
reduced memory utilization and I/O time. Target completion: January 2008.
4.8. VisIt AR interface
Once we have a reasonable AR implementation, we want to provide access to it from the VisIt
environment. Target completion: July 2008.
4.9. AR caching/pre-fetching support
Caching and pre-fetching strategies are significantly more complicated for AR data
representations than they are for uniform resolution data. Target completion: July 2008.
4.10. Grid access
One of our primary long-term goals is to be able to integrate our data management software tools
into a Grid environment. Target completion: January 2009.
4.11. Performance studies for system parameter heuristics
A previous target goal was to evaluate the performance characteristics of data access to a local
disk compared to data access over a local area net (LAN) with the stated goal of trying to provide
user guidance for distributing the data at different resolution levels. This particular performance
study is just one of many that could be carried out to provide guidelines to help users configure a
variety of system parameters. We certainly plan to do performance tests at every stage of the
development in order to validate the effectiveness of our approach. We believe now, however,
that tests aimed at "tuning" the system parameters would be most effectively carried out near the
end of the grant period. At that time we will have a much better understanding of which
parameters are important to tune and which are not. Consequently, we now plan to incorporate
such tests as a goal for the last quarter of the grant period. (Note that this goal has replaced the
original last goal from the proposal, which was to experiment with the integration of simulation
and sampled data into a single visualization. This would have been a completely new research
effort initiated very near the end of the grant period. As interesting and important as this task is,
it seems like the overall goals of this project and the AISR program would be better served by
focusing the end game on this new goal.) Target completion: March 2009.

4.12. Summary of major goals
The table below provides a summary of the major planned tasks for the remainder of the grant
period. Note that there will be additional code packaging and distribution tasks for subsequent
versions of the software. Specific dates for completion of these tasks will be determined later.

Development Task Date Science task

1. Investigate VAPOR as another
potential framework environment

7/07 Give us advice/feedback on value of VAPOR
visualization tools

7

2. Expand non-uniform grid support 8/07 None. Their data format is already supported.
3. Package STARgen and VisIt interface
for distribution

9/07 Test ease of installation.

4. VisIt data interface: auto resolution
change

9/07 Use and evaluate modified interface

5. Error support 9/07 Use and evaluate error functionality

6. Granite/C++: caching/prefetching 1/08 Use caching/prefetching features, compare results
7. Adaptive resolution prototype 1/08 Test our implementation tool and give feedback
8. VisIt data interface: AR support 7/08 Compare performance/quality to non-AR using VisIt

9. Adaptive resolution cache support 7/08
10. Grid access 1/09 Use and evaluate data access over the grid

11. Performance studies and system
parameter guidelines

3/09

5. Publications
Foulks, R., D. Benedetto, R.D. Bergeron and T.M. Sparr, STARdata: A Data Server for
Multiresolution Time Series Data, AGU Fall Meeting Abstracts, Dec. 2006, p. A1316+.
Bergeron, R.D. and R.A. Foulks, “Interactive Out-of-Core Visualization of Multiresolution Time
Series Data”, in Numerical Modeling of Space Flows: 1ST IGPP – CalSpace International
Conference, ed. Nikolai V. Pogorelov and Gary P. Zank, ASP Conference Series, Vol 359,
Astronomical Society of the Pacific, 2006, pp. 285-294.

